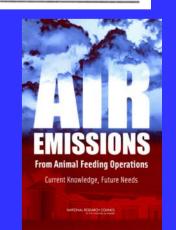
Ammonia Losses From a Commercial Cattle Feedlot: Towards a Realistic NH₃ Emissions Inventory for the Great Plains

Principal Investigators:

J.M. Ham, G.M. Pierzynski, R.G. Maghirang, W.L. Hargrove, J.M. DeRouchey

Graduate Students

K. Baum, G. Vaillant


Advisors

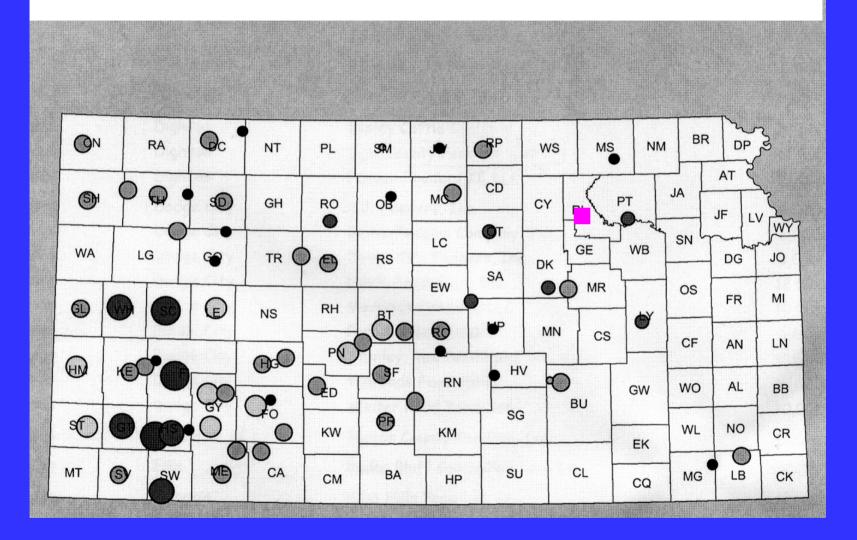
J. Brethour, J. Meisinger

COLLEGE OF AGRICULTURE
KANSAS STATE UNIVERSITY

TABLE ES-1 Committee's Scientific Evaluation of the Potential Importance^a of AFO Emissions at Different Spatial Scales

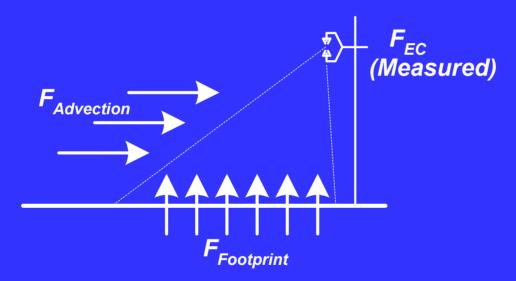
Emissions	Global, National, and Regional	Local—Property Line or Nearest Dwelling	Primary Effects of Concern
NH ₃	Major ^a	Minor	Atmospheric deposition, haze
N ₂ O	Significant	Insignificant	Global climate change
NO_x	Significant	Minor	Haze, atmospheric deposition, smo
CH ₄	Significant	Insignificant	Global climate change
$VOCs^b$	Insignificant	Minor	Quality of human life
H ₂ S	Insignificant	Significant	Quality of human life
$PM10^{c}$	Insignificant	Significant	Haze
PM2.5 ^c	Insignificant	Significant	Health, haze
Odor	Insignificant	Major	Quality of human life

Objectives


 Measure the fluxes of NH₃ and NH₄ aerosol from a large block of pens (e.g., 10,000 head) at a commercial cattle feedlot.

 Compare the atmospheric NH₃ flux measurements to other parameters in the feedlot nitrogen balance

Objectives


- Analyze the relationship between feednitrogen and NH_x emissions in response to weather conditions, boundary-layer physics, soil moisture, and soil chemical conditions at the pen surface.
- Develop and test variations of the relaxed eddy accumulation (REA) technique for measuring NH_x flux. Study the impact of spatial variation.

Kansas Beef Cattle Capacity (au)

Preliminary Objectives

- Determine the significance of horizontal advection at a cattle feedlot (spatial variation in flux).
- 2. Determine aerodynamic roughness

$$F_{Ft} = \int_{0}^{z_{r}} \frac{\partial \bar{c}}{\partial t} dz + (\overline{w'c'})_{z_{r}} + \int_{0}^{z_{r}} \left\{ \bar{u} \frac{\partial \bar{c}}{\partial x} + \bar{w} \frac{\partial \bar{c}}{\partial z} \right\} dz$$

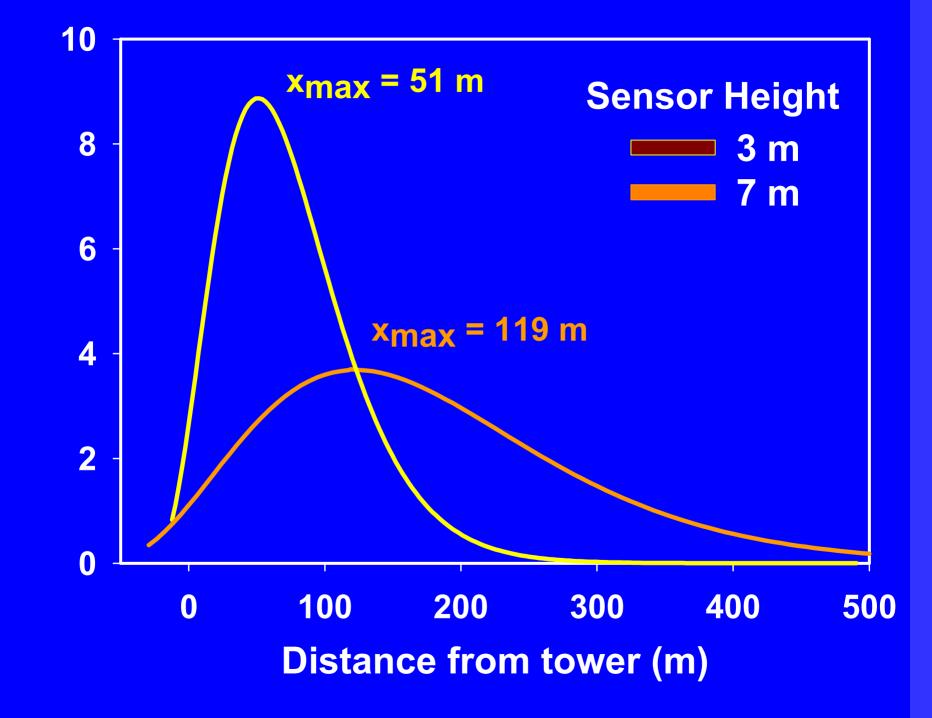
$$F_{Ft} = F_{Stg} + F_{EC} + F_{Adv}$$

Methods and Materials

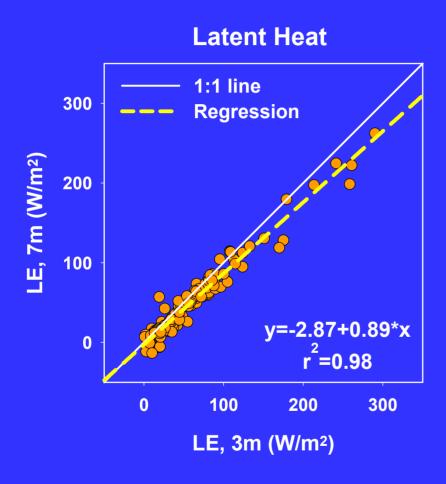
Eddy Covariance (EC) components:

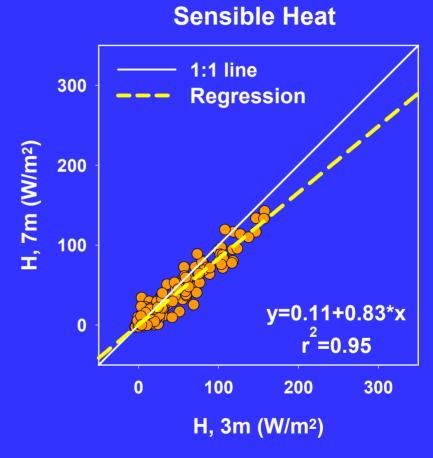
- 3-D Sonic Anemometer: measures 3-dimensional wind speed.
- Open-path Infrared Gas Analyzer (IRGA): measures concentrations of water vapor and CO₂.

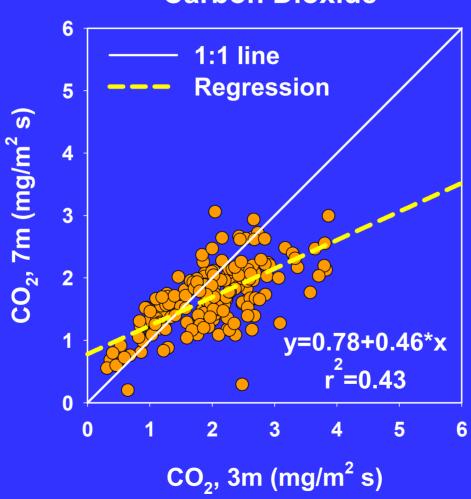
Both taking measurements at 10 Hz.



Methods and Materials


- Two Eddy Covariance (EC) systems at 3 m and 7 m above the pen surface.
- Fluxes measured at the two heights should be the same, if advection or differences in the footprint are not present.
- Sonic anemometer data is used to calculate z₀ at each height.




Results: Advection

Results: Advection

Results: Roughness

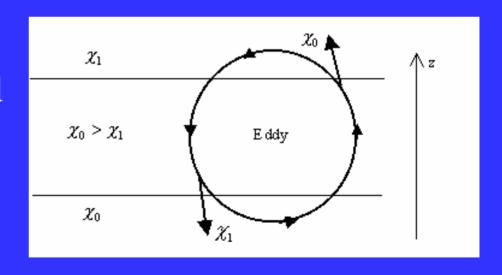
Median z_0 :

3 m = 5.0 cm

7 m = 3.3 cm

Surface Type	z ₀ (cm)
Concrete*	0.02-0.05
Fallow ground*	0.1-0.4
Short grass*	0.8-3.0
Cattle feedlot	2.0-6.0
Mature grain crops*	12-18
Dense, low buildings*	40-70
Mature pine forest*	80-160

Measuring Emission Rates by Relaxed Eddy Accumulation (Conditional Sampling)


$$J\chi = 0.58\sigma_{w}\rho(\chi_{up} - \chi_{dn})$$

J = Flux density

 σ = std. dev. vert. wind

 ρ = air density

 $\chi = mixing ratio$

Short-Term Goals, Summer 2005

- Testing and deployment of REA methods for NH_x flux measurement
- Soil chemical analysis of pen surface and subsurface
- Evaluation of feeding records & start nitrogen balance measurements
- Particulate analysis
- Finish analysis of feedlot boundary layer

Research Needs / Collaboration

- Continuous / real-time techniques for measuring NH₃ and NH₄ with adequate resolution for micrometeorological flux measurement.
- Modeling the chemistry and hydrology of the pen surface.

Acknowledgements

- NRI Integrated Air Quality program
- Feedlot Cooperators
- Kansas Livestock Association
- Kansas State Research and Extension

COLLEGE OF AGRICULTURE
KANSAS STATE UNIVERSITY

